10=1/3q^2

Simple and best practice solution for 10=1/3q^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=1/3q^2 equation:



10=1/3q^2
We move all terms to the left:
10-(1/3q^2)=0
Domain of the equation: 3q^2)!=0
q!=0/1
q!=0
q∈R
We get rid of parentheses
-1/3q^2+10=0
We multiply all the terms by the denominator
10*3q^2-1=0
Wy multiply elements
30q^2-1=0
a = 30; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·30·(-1)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*30}=\frac{0-2\sqrt{30}}{60} =-\frac{2\sqrt{30}}{60} =-\frac{\sqrt{30}}{30} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*30}=\frac{0+2\sqrt{30}}{60} =\frac{2\sqrt{30}}{60} =\frac{\sqrt{30}}{30} $

See similar equations:

| 7=13(x-5) | | 4y−3=4 | | 5x+4-3(2x-1)=8-(7x-1)+x | | 79+(10x+11)=360 | | 79+(10x+11)=180 | | y−7=−2 | | y−7=−2 | | d/36^2=20/30^2 | | X²+4m=13 | | p−5=2 | | 8(x-4)+3=2x+6(-5+x) | | x/5-1=x8+2 | | 2/t=7 | | 3x+3=2x-9. | | 41.28=9g+3.84 | | 42=15c-4 | | 41=25c-4 | | -5(2t-3)+2t=8+-2 | | 21+.47x=89.62 | | -3(4x-7)+3=-12x+24 | | x/7=x+2/4 | | 124x+24=5 | | 10m^2+2m=9 | | 0.5(x-4/5)=3/5 | | a=90*51 | | 6x+1/5=7x+2/5 | | 9-2(x+5)=x+10 | | 32x-98=0 | | 3(x-6)+6=-12 | | 3*x+12=114 | | ?x5-12=28 | | 4(v+5)=0 |

Equations solver categories